207 research outputs found

    Peroxynitrite formation and sinusoidal endothelial cell injury during acetaminophen-induced hepatotoxicity in mice

    Get PDF
    INTRODUCTION:Vascular injury and accumulation of red blood cells in the space of Disse (hemorrhage) is a characteristic feature of acetaminophen hepatotoxicity. However, the mechanism of nonparenchymal cell injury is unclear. Therefore, the objective was to investigate if either Kupffer cells or intracellular events in endothelial cells are responsible for the cell damage.RESULTS:Acetaminophen treatment (300 mg/kg) caused vascular nitrotyrosine staining within 1 h. Vascular injury (hemorrhage) occurred between 2 and 4 h. This paralleled the time course of parenchymal cell injury as shown by the increase in plasma alanine aminotransferase activities. Inactivation of Kupffer cells by gadolinium chloride (10 mg/kg) had no significant effect on vascular nitrotyrosine staining, hemorrhage or parenchymal cell injury. In contrast, treatment with allopurinol (100 mg/kg), which prevented mitochondrial injury in hepatocytes, strongly attenuated vascular nitrotyrosine staining and injury.CONCLUSIONS:Our data do not support the hypothesis that acetaminophen-induced superoxide release leading to vascular peroxynitrite formation and endothelial cell injury is caused by activated Kupffer cells. In contrast, the protective effect of allopurinol treatment suggests that, similar to the mechanism in parenchymal cells, mitochondrial oxidant stress and peroxynitrite formation in sinusoidal endothelial cells may be critical for vascular injury after acetaminophen overdose.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]

    Chlorotyrosine protein adducts are reliable biomarkers of neutrophil-induced cytotoxicity in vivo

    Get PDF
    INTRODUCTION:A limitation for investigating the pathophysiological role of neutrophils in vivo is the lack of a reliable biomarker for neutrophil cytotoxicity in the liver. Therefore, we investigated if immunohistochemical detection of chlorotyrosine protein adducts can be used as a specific footprint for generation of neutrophil-derived hypochlorous acid in vivo.METHODS:C3Heb/FeJ mice were treated with 100 micrograms/kg endotoxin (ET) alone or in combination with 700 mg/kg galactosamine (Gal/ET). Some animals received additionally two doses of 10 mg/kg of the pancaspase inhibitor Z-VAD-fmk. An antibody against chlorotyrosine was used for the immunohistochemical analysis.RESULTS:At 6 h after Gal/ET, hepatocellular apoptosis was evident without increase in plasma ALT activities. Neutrophils accumulated in sinusoids but there was no evidence for chlorotyrosine staining. At 7 h after Gal/ET, about 54% of the sequestered neutrophils had extravasated, there was extensive necrosis and increased plasma ALT activities. Extensive immunostaining for chlorotyrosine, mainly colocalized with neutrophils, could be observed. Treatment with Z-VAD-fmk eliminated apoptosis, necrosis and the increase in plasma ALT values. Neutrophil extravasation was prevented but the overall number of neutrophils in the liver was unchanged. Chlorotyrosine staining was absent in these samples. After ET alone (7 h), sinusoidal neutrophil accumulation was similar to Gal/ET treatment but there was no apoptosis, neutrophil extravasation, ALT release or chlorotyrosine staining.CONCLUSIONS:Chlorotyrosine staining in liver samples correlated well with evidence of neutrophil-induced liver injury in the endotoxemia model. These results indicate that assessment of chlorotyrosine protein adduct formation by immunohistochemistry could be a useful marker of neutrophil-induced liver cell injury in vivo.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]

    Heme oxygenase-1 induction in hepatocytes and non-parenchymal cells protects against liver injury during endotoxemia

    Get PDF
    INTRODUCTION:Heme oxygenase-1 (HO-1) is a stress response enzyme, which catalyses the breakdown of heme into biliverdin-IX alpha, carbon monoxide and ferrous iron. Under situations of oxidative stress, heat stress, ischemia/reperfusion injury or endotoxemia, HO-1 has been shown to be induced and to elicit a protective effect. The mechanism of how this protective effect is executed is unknown.RESULTS:HO-1 induction with cobalt protoporphorin (Co-PP) dose-dependently protected against apoptotic cell death as well as neutrophil-mediated oncosis in the galactosamine/endotoxin (Gal/ET) shock model. Induction of HO-1 with Co-PP dose-dependently protected against neutrophil-mediated oncosis as indicated by attenuated ALT release and TNF-mediated apoptotic cell death as indicated by reduced caspase-3 activation. HO-1 induction did not attenuate Gal/ET-induced TNF-alpha formation. Furthermore, a similar protective effect with the high dose of Co-PP was observed when animals were treated with Gal/TNF-alpha.CONCLUSIONS:HO-1 induction attenuates apoptosis and neutrophil-mediated oncosis in the Gal/ET shock model. However, the protective effect is not due to the reduction of TNF-alpha release or the attenuation of neutrophil accumulation in the liver sinusoids.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]

    A cellular model to study drug-induced liver injury in nonalcoholic fatty liver disease: application to acetaminophen

    No full text
    International audienceObesity and nonalcoholic fatty liver disease (NAFLD) can increase susceptibility to hepatotoxicity induced by some xenobiotics including drugs, but the involved mechanisms are poorly understood. For acetaminophen (APAP), a role of hepatic cytochrome P450 2E1 (CYP2E1) is suspected since the activity of this enzyme is consistently enhanced during NAFLD. The first aim of our study was to set up a cellular model of NAFLD characterized not only by triglyceride accumulation but also by higher CYP2E1 activity. To this end, human HepaRG cells were incubated for one week with stearic acid or oleic acid, in the presence of different concentrations of insulin. Although cellular triglycerides and the expression of lipid-responsive genes were similar with both fatty acids, CYP2E1 activity was significantly increased only by stearic acid. CYP2E1 activity was reduced by insulin and this effect was reproduced in cultured primary human hepatocytes. Next, APAP cytotoxicity was assessed in HepaRG cells with or without lipid accretion and CYP2E1 induction. Experiments with a large range of APAP concentrations showed that the loss of ATP and glutathione was almost always greater in the presence of stearic acid. In cells pretreated with the CYP2E1 inhibitor chlormethiazole, recovery of ATP was significantly higher in the presence of stearate with low (2.5 mM) or high (20 mM) concentrations of APAP. Levels of APAP-glucuronide were significantly enhanced by insulin. Hence, HepaRG cells can be used as a valuable model of NAFLD to unveil important metabolic and hormonal factors which can increase susceptibility to drug-induced hepatotoxicit

    Double deletion of PINK1 and Parkin impairs hepatic mitophagy and exacerbates acetaminophen-induced liver injury in mice

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.Mitochondria damage plays a critical role in acetaminophen (APAP)-induced necrosis and liver injury. Cells can adapt and protect themselves by removing damaged mitochondria via mitophagy. PINK1-Parkin pathway is one of the major pathways that regulate mitophagy but its role in APAP-induced liver injury is still elusive. We investigated the role of PINK1-Parkin pathway in hepatocyte mitophagy in APAP-induced liver injury in mice. Wild-type (WT), PINK1 knockout (KO), Parkin KO, and PINK1 and Parkin double KO (DKO) mice were treated with APAP for different time points. Liver injury was determined by measuring serum alanine aminotransferase (ALT) activity, H&E staining as well as TUNEL staining of liver tissues. Tandem fluorescent-tagged inner mitochondrial membrane protein Cox8 (Cox8-GFP-mCherry) can be used to monitor mitophagy based on different pH stability of GFP and mCherry fluorescent proteins. We overexpressed Cox8-GFP-mCherry in mouse livers via tail vein injection of an adenovirus Cox8-GFP-mCherry. Mitophagy was assessed by confocal microscopy for Cox8-GFP-mCherry puncta, electron microscopy (EM) analysis for mitophagosomes and western blot analysis for mitochondrial proteins. Parkin KO and PINK1 KO mice improved the survival after treatment with APAP although the serum levels of ALT were not significantly different among PINK1 KO, Parkin KO and WT mice. We only found mild defects of mitophagy in PINK1 KO or Parkin KO mice after APAP, and improved survival in PINK1 KO and Parkin KO mice could be due to other functions of PINK1 and Parkin independent of mitophagy. In contrast, APAP-induced mitophagy was significantly impaired in PINK1-Parkin DKO mice. PINK1-Parkin DKO mice had further elevated serum levels of ALT and increased mortality after APAP administration. In conclusion, our results demonstrated that PINK1-Parkin signaling pathway plays a critical role in APAP-induced mitophagy and liver injury.NIH R01 AA 020518NIH R01 DK 102142NIH U01 AA 024733NIH P20 GM 103549NIH P30 GM 118247NIH COBRE grant 9P20GM104936NIH S10RR02756

    Tissue factor contributes to neutrophil CD11b expression in alpha-naphthylisothiocyanate-treated mice

    Get PDF
    Cholestatic liver injury induced by alpha-naphthylisothiocyanate (ANIT) is provoked by injury to intrahepatic bile ducts and the progression of hepatic necrosis requires the procoagulant protein tissue factor (TF) and extrahepatic cells including neutrophils. Recent studies have shown that myeloid cell TF contributes to neutrophil activation. We tested the hypothesis that myeloid cell TF contributes to neutrophil activation in ANIT-treated mice. TF activity in liver homogenates increased significantly in TFflox/flox mice treated with ANIT, but not in TFflox/flox/LysMCre mice (TFΔMyeloid mice), which have reduced TF expression in monocytes/macrophages and neutrophils. Myeloid cell-specific TF deficiency did not alter expression of the chemokines KC or MIP-2, but reduced hepatic neutrophil accumulation in ANIT-treated mice at 48 hours as indicated by tissue myeloperoxidase (MPO) activity. Myeloid cell TF deficiency significantly reduced CD11b expression by blood neutrophils in ANIT-treated mice and this was associated with reduced plasma MPO protein levels, an index of neutrophil degranulation. However, myeloid cell-specific TF deficiency had no effect on ANIT-induced coagulation cascade activation. The increase in serum ALT and ALP activities in ANIT-treated mice was reduced by myeloid cell TF deficiency (p<0.05), but the myeloid cell TF deficiency did not reduce hepatic necrosis at 48 hours, as determined by histopathology and morphometry. The results suggest that myeloid cell TF contributes to neutrophil CD11b expression during cholestasis by a coagulation-independent pathway. However, the resultant reduction in neutrophil accumulation/activation is insufficient to substantially reduce ANIT hepatotoxicity, suggesting that myeloid cell TF is only one of many factors modulating hepatic necrosis during cholestasis

    Regulation of Liver Regeneration by Hepatocyte O-GlcNAcylation in Mice

    Get PDF
    A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author's publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.Background & Aims The liver has a unique capacity to regenerate after injury in a highly orchestrated and regulated manner. Here, we report that O-GlcNAcylation, an intracellular post-translational modification regulated by 2 enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), is a critical termination signal for liver regeneration following partial hepatectomy (PHX). Methods We studied liver regeneration after PHX on hepatocyte specific OGT and OGA knockout mice (OGT-KO and OGA-KO), which caused a significant decrease (OGT-KO) and increase (OGA-KO) in hepatic O-GlcNAcylation, respectively. Results OGA-KO mice had normal regeneration, but the OGT-KO mice exhibited substantial defects in termination of liver regeneration with increased liver injury, sustained cell proliferation resulting in significant hepatomegaly, hepatic dysplasia, and appearance of small nodules at 28 days after PHX. This was accompanied by a sustained increase in expression of cyclins along with significant induction in pro-inflammatory and pro-fibrotic gene expression in the OGT-KO livers. RNA-sequencing studies revealed inactivation of hepatocyte nuclear 4 alpha (HNF4α), the master regulator of hepatic differentiation and a known termination signal, in OGT-KO mice at 28 days after PHX, which was confirmed by both Western blot and immunohistochemistry analysis. Furthermore, a significant decrease in HNFα target genes was observed in OGT-KO mice, indicating a lack of hepatocyte differentiation following decreased hepatic O-GlcNAcylation. Immunoprecipitation experiments revealed HNF4α is O-GlcNAcylated in normal differentiated hepatocytes. Conclusions These studies show that O-GlcNAcylation plays a critical role in the termination of liver regeneration via regulation of HNF4α in hepatocytes

    Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury

    Get PDF
    AbstractWarm and cold hepatic ischemia followed by reperfusion leads to necrotic cell death (oncosis), which often occurs within minutes of reperfusion. Recent studies also suggest a large component of apoptosis after ischemia/reperfusion. Here, we review the mechanisms underlying adenosine triphosphate depletion—dependent oncotic necrosis and caspase-dependent apoptosis, with emphasis on shared features and pathways. Although apoptosis causes internucleosomal DNA degradation that can be detected by terminal deoxynucleotidyl transferase—mediated deoxyuridine triphosphate nick-end labeling and related assays, DNA degradation also occurs after oncotic necrosis and leads to pervasive terminal deoxynucleotidyl transferase—mediated deoxyuridine triphosphate nick-end labeling staining far in excess of that for apoptosis. Similarly, although apoptosis can occur in a physiological setting without inflammation, in pathophysiological settings apoptosis frequently induces inflammation because of the onset of secondary necrosis and stimulation of cytokine and chemokine formation. In liver, the mitochondrial permeability transition represents a shared pathway that leads to both oncotic necrosis and apoptosis. When the mitochondrial permeability transition causes severe adenosine triphosphate depletion, plasma membrane failure and necrosis ensue. If adenosine triphosphate is preserved, at least in part, cytochrome c release after the mitochondrial permeability transition activates caspase-dependent apoptosis. Mitochondrial permeability transition-dependent cell death illustrates the concept of necrapoptosis, whereby common pathways lead to both necrosis and apoptosis. In conclusion, oncotic necrosis and apoptosis can share features and mechanisms, which sometimes makes discrimination between the 2 forms of cell death difficult. However, elucidation of critical cell death pathways under clinically relevant conditions will show potentially important therapeutic intervention strategies in hepatic ischemia/reperfusion injury

    The Multifaceted Therapeutic Role of N-Acetylcysteine (NAC) in Disor-ders Characterized by Oxidative Stress

    Get PDF
    Oxidative stress, which results in the damage of diverse biological molecules, is a ubiquitous cellular process implicated in the etiology of many illnesses. The sulfhydryl-containing tripeptide glutathione (GSH), which is synthesized and maintained at high concentrations in all cells, is one of the mechanisms by which cells protect themselves from oxidative stress. N-acetylcysteine (NAC), a synthetic derivative of the endogenous amino acid L-cysteine and a precursor of GSH, has been used for several decades as a mucolytic and as an antidote to acetaminophen (paracetamol) poisoning. As a mucolytic, NAC breaks the disulfide bonds of heavily cross-linked mucins, thereby reducing mucus viscosity. In vitro, NAC has antifibrotic effects on lung fibroblasts. As an antidote to acetaminophen poisoning, NAC restores the hepatic GSH pool depleted in the drug detoxification process. More recently, improved knowledge of the mechanisms by which NAC acts has expanded its clinical applications. In particular, the discovery that NAC can modulate the homeostasis of glutamate has prompted studies of NAC in neuropsychiatric diseases characterized by impaired glutamate homeostasis. This narrative review provides an overview of the most relevant and recent evidence on the clinical application of NAC, with a focus on respiratory diseases, acetaminophen poisoning, disorders of the central nervous system (chronic neuropathic pain, depression, schizophrenia, bipolar disorder, and addiction), cardiovascular disease, contrast-induced nephropathy, and ophthalmology (retinitis pigmentosa). </jats:sec
    • …
    corecore